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ABSTRACT

We propose and apply a test that can detect any systematic errors in the Hipparcos

parallaxes towards the Hyades cluster at the level of 0.3 mas. We show that the statistical

parallax method subsumes the classical moving cluster methods and provides more accurate

and robust estimates of the distance and the �rst two moments of the velocity distribution

of the Hyades cluster namely, its bulk space velocity and the velocity dispersion tensor.

We predict the parallaxes of Hyades cluster members using the common cluster space

velocity derived from the statistical parallax method and their individual Hipparcos proper

motions. We show that the parallaxes determined in this manner (�pm) are consistent

at the 1� level with the parallaxes (�orb) of three Hyades spectroscopic binary systems

with orbital solutions. We �nd that h�pm � �orbi = 0:49 � 0:47 mas, where the error is

dominated by the errors in the orbital parallaxes. A reduction in this error would allow

a test of the systematic errors in the Hipparcos parallaxes at the 0.3 mas level. We also

�nd that the parallaxes determined using the Hipparcos proper motions and the common

cluster velocity are consistent with the Hipparcos parallaxes themselves, thus con�rming

that the Hipparcos astrometric results towards the Hyades cluster are self consistent. Along

the way, we determine the velocity of the Hyades cluster in equatorial coordinates to be

(Vx; Vy; Vz) = (�5:70� 0:19; 45:67� 0:11; 5:61� 0:08) km s�1 and its velocity dispersion to

be 330� 30 m s�1.

Subject headings: astrometry: parallaxes, methods: analytical, statistical,

Galaxy: open clusters and associations: Individual(Hyades)

1. INTRODUCTION

The Hipparcos mission (ESA97) has derived accurate astrometric parameters for

about 120,000 stars distributed all over the sky. The systematic errors in the parallaxes
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(proper motions) are claimed to be �< 0:1 mas (mas yr�1), while the random errors are

of the order of 1 mas (mas yr�1). However, recent comparisons of the distances to open

clusters derived from Hipparcos parallaxes and main sequence �tting techniques show

surprisingly large di�erences for some clusters that can be reconciled only if the systematic

error in the Hipparcos parallaxes is at the level of 1 mas, at least in certain parts of the

sky (Pinsonneault et al. 1998, hereafter PSSKH98, Mermilliod et al. 1997; Robichon et al.

1997). It is therefore prudent to compare the Hipparcos parallaxes with accurate parallaxes

determined in an independent manner. In this paper, we propose and apply one such

method which could test for systematic errors in Hipparcos astrometry towards the Hyades

cluster at the level of 0.28 mas.

The statistical power of our test derives from the fact that the fractional error in the

Hipparcos proper motions of the Hyades cluster members (��= h�Hyai = 1:4%) is about four

times smaller than the fractional error in their Hipparcos parallaxes (��= h�Hyai = 6%),

where we have assumed that the mean parallax and the proper motion of the Hyades cluster

are h�Hyai = 21:5 mas and h�Hyai = 111 mas yr�1 respectively and their errors are �� = 1:3

mas and �� = 1:5 mas yr�1. Hence, if one can accurately determine the space velocity of the

Hyades cluster, one can use the Hipparcos proper motions to predict the parallaxes of the

individual Hyades members more accurately than the Hipparcos parallaxes, assuming that

all the members partake in this common cluster motion (to within the velocity dispersion

of the cluster). The accurate parallaxes predicted in this manner can then be compared

with the Hipparcos parallaxes and with parallaxes determined in an independent manner

to determine the level of the systematic errors in the Hipparcos astrometry.

The basic steps of our test are as follows:

(1): We select a set of Hyades cluster members all of which are consistent with having the

same velocity as the bulk motion of the cluster itself.

(2): We derive the space velocity of the Hyades cluster by combining the radial velocities of

the individual cluster members, their Hipparcos proper motions and their photometric

distance modulus derived from an isochrone of the Hyades main sequence. All these

independent data are elegantly combined in the statistical parallax method to derive

a maximum likelihood estimate of the distance scale and the �rst two moments of

the velocity distribution of the Hyades { the bulk velocity and the velocity dispersion

tensor (Hawley et al. 1986; Strugnell, Reid & Murray 1986; Popowski & Gould 1998).

This procedure generalizes the classical moving cluster methods. We combine this

solution with Hipparcos trigonometric parallaxes and derive a robust estimate of the

bulk velocity of the cluster.
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(3): We adopt this common cluster velocity to predict the parallaxes of three Hyades

spectroscopic binary systems whose orbital solutions are known accurately from

previous work.

(4): We compare the parallaxes predicted in this manner with the parallaxes from the

orbital solutions of the three binaries to check if there are any systematic errors in the

Hipparcos astrometry towards the Hyades cluster.

The outline of this paper is as follows. We explain the connection between the classical

moving cluster methods and the statistical parallax method in x2. We describe our selection

of Hyades cluster members and our estimate of its common space velocity in x3. In x4, we

outline the procedure for estimating the parallaxes to individual cluster members using the

common cluster motion and proper motions from the Hipparcos catalog. We compare the

parallaxes predicted by this method with the parallaxes from the orbital solutions of the 3

binary systems in x5. We conclude in x6 by describing the future potential of this method.

2. STATISTICAL PARALLAX AS A GENERALIZED MOVING CLUSTER

METHOD

In this section, we describe how the statistical parallax method is a generalized form of

the classical moving cluster methods and provides a more accurate and precise distance to

the Hyades cluster. First, we present the various equations describing the geometry of the

cluster motion and show how the statistical parallax method subsumes the moving cluster

methods. We then use some simple assumptions about the Hyades cluster to present a

quantitative estimate of how much extra information about the distance is present in the

statistical parallax formalism compared to the moving cluster methods.

Consider a cluster at a distance d whose bulk velocity is V. If the radial velocity at an

appropriately de�ned cluster center is Vr and the transverse velocity of the cluster in the

plane of the sky is VT , we have,

� =
VT

d
; (1)

VT = V � Vrr̂; (2)

where � is the proper motion vector of the cluster center in the plane of the sky. The

di�erence between the transverse-velocity and the proper-motion vectors (�VT and ��) of

the cluster center and those of the individual cluster members are then given by

�VT = �Vr�; (3)
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where � is the angular separation vector between the cluster center and the cluster

member star in the plane of the sky, and we have assumed that j�j � 1 (the small angle

approximation), and (�d=d) � 1. This vector can be split into two components �k and �?
along the directions that are parallel and perpendicular respectively, to the proper motion

vector (�) of the cluster in the plane of the sky. Equation (4) can then be written in terms

of these components as

��? = �
�
Vr
d

�
�?; (5)

��k = �
�
Vr
d

�
�k �

 
�d

d

!
�k; (6)

since �? = 0, by de�nition. Further, we also have

�Vr = (� � �)d = �k�kd = �kVT ; (7)

where �Vr is the di�erence between the radial velocities of the cluster member star and the

cluster center, and VT = jVT j.

It is clear from the above equations that there are three independent measures of

the distance to the cluster from equations (5), (6), and (7). In the classical moving

cluster method, the proper motions of the individual cluster members are used to derive a

convergent point on the sky. This information is combined with an average radial velocity

of the cluster center to derive its distance using equation (5) (Boss 1908; Schwan 1991).

Alternatively, if there are reliable radial velocities of the cluster members, equation (7) can

be used to estimate the cluster distance by making use of the average proper motion of the

cluster center (Detweiler et al. 1984; Gunn et al. 1988, hereafter G88). Equation (6) has not

been used so far to measure the distance as it includes a combination of two terms which

are degenerate in the absence of an independent estimate of �d.

All three independent estimates of the cluster distance are naturally combined in

the statistical parallax method. The resultant distance is then the weighted average of

the individual distances from the three equations. Since these distance estimates are

independent of each other, their variances add harmonically. The weights from each of these

estimates is proportional to (di=�i)
2 where di and �i; (i = 1; 2; 3) are the distances and the

errors in the distances from each of the three equations. These weights are approximately

given by

W1 =

*
(�?Vr)

2

A

+
; (8)
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W2 =

*
(�kVT )

2

B

+
; (9)

W3 =

*
(�kVr)

2

C

+
; (10)

W4 =

*
(�dVT )

2

C

+
; (11)

where A = [(d��)
2 + �2]; B = [�2r + �2]; and C = [A + (�d�)

2] . Here, �r and �� are the

errors in the radial velocities and the proper motion respectively, �d is the error in the

distance to individual cluster members, �d = �d=d, and � is the velocity dispersion of the

cluster. The weights W1 and W2 are the weights corresponding to the classical moving

cluster methods using proper motions [eq. (5)] and radial velocities [eq. (7)] respectively,

while W3 and W4 are the weights from the �rst and the second terms of equation (6).

For the purpose of illustration, we assume that for the Hyades cluster d�� = 0:3 km s�1,

�r = 0:2 km s�1, �d� = 0:6 km s�1,
D
�2k
E
= h�2?i = h�2di � h�2i ; and Vr = (5=3)VT = 40

km s�1. This leads to W1 : W2 : W3 : W4 = 1 : 0:50 : 0:33 : 0:12, showing that there

is signi�cant information about the distance in the two terms of equation (6). Hence,

the distance estimate using the statistical parallax method is more robust and accurate

compared to that derived using the classical moving cluster methods alone. We also note

that in the absence of observational errors, the fractional accuracy in the cluster distance

from the statistical parallax method using N cluster member stars is given by

�d

d
=
�
2N�2

D
�2
E�� 1

2 ; (12)

where � = (V=�) is the \Mach number" { the ratio of the bulk velocity of the cluster to its

velocity dispersion.

3. MEMBERSHIP AND COMMON CLUSTER MOTION

We now �nd the bulk velocity of the Hyades cluster using the Hipparcos proper

motions of the cluster members. However, a non-trivial problem here is the identi�cation

of the stars belonging to the cluster itself. We present our criteria for selecting the Hyades

cluster members in x3.1 and describe our method of deriving its space velocity in x3.2.
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3.1. Cluster Membership

We select a preliminary set of 75 Hyades cluster candidates from the list of Hyades

candidates in Table 2 of Perryman et al. (1998, hereafter P98) Our selection criteria for

choosing these candidates are as follows:

(1): All the candidate stars should have reliable radial velocity measurements. We correct

the raw radial velocity measurements of those stars measured by Gri�n et al. (1988)

(stars with an entry 1 in column r of Table 2 of P98) using the procedure described

by equation (12) of G88, but accounting for a sign error (P98; R.Gri�n 1998, private

communication).

(2): We reject all the stars that are either known or suspected to be binaries from earlier

work. These are the stars with any alphabetical entry in at least one of the columns

s, t or u of Table 2 of P98.

(3): We select only those stars with reliable ground based photometric measurements of

both VJ and (B � V )J . We use the mean values of these quantities for the candidate

stars from the GCPD photometric database of Mermilliod, Mermilliod & Hauck

(1997), or from the Hipparcos catalog itself if the former are not available.

(4): The candidate stars should have colors in the range 0:4 < (B � V )J < 1:0.

(5): We also reject any star that is agged as a variable in the Hipparcos catalog.

We derive the photometric distance modulus (m�M) to each of the 75 candidate stars

in the color range 0:4 < (B � V )J < 1:0 by �nding the di�erence between the apparent

magnitude of the star and the absolute magnitude for its color predicted by the isochrones

of the Hyades main sequence. For the adopted range in (B � V )J color, the isochrones are

reliable indicators of the distance modulus up to a possible global o�set. Since the Hyades

isochrones have not previously been determined to high precision, we apply our selection

criteria using two distinct isochrones which, as we show below, span the range of the true

isochrone. First, we use the isochrones adopted by PSSKH98 and we refer the reader to that

paper for further details about the construction of the isochrones. We assume a metallicity

of [Fe=H] = +0:14 and an age of 600 Myr for the Hyades (P98). We use the Yale color

calibration (Green 1988) to transform the isochrones from the luminosity-temperature plane

to the color-magnitude plane. Second, we use the color calibration proposed by Alonso,

Arribas, & Martinez-Roger (1996) which predicts a di�erent shape for the isochrone. We

�nd that the cluster membership is identical for both of these isochrones. We note that

the two isochrones have di�erent zero points and color dependence with the result that if
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the isochrones are forced to coincide at (B � V )J = 0:4, they di�er by about 0.3 mag at

(B � V )J = 1:0. We assume that the true isochrone is in the general range of these two

�ducial isochrones and parametrize it by the function

MV (B � V ) =MV;Yale(B � V ) + �(m�M) + �[(B � V )J � 0:7] (13)

where �(m�M) and � are parameters to be determined. These allow for both an o�set in

the zero point and a di�erent slope for the color-magnitude relation.

For each pair of values of �(m�M) and �, we determine the space velocities (Vi) of

all these candidates using their photometric distance modulus, their radial velocities and

their proper motions from the Hipparcos catalog. We derive a best-�t mean velocity (�V)

of their centroid and reject the stars that are gross outliers from this mean cluster motion.

We compute the quantity �2 de�ned as,

�2 =
NX
i=1

�
Vi � �V

�T
C�1

i

�
Vi � �V

�
; (14)

where the summation is over all the N stars that remain at each iteration. The covariance

matrix Ci for star i includes contributions from the error in the photometric distance

modulus, from the error in the proper motion, and from the velocity dispersion of the

cluster. The cluster velocity dispersion is between 0:2 to 0:4 km s�1 (G88; P98; Dravins et

al. 1997) for plausible values of the cluster mass of about 300M� to 450M� and half-mass

radius of the cluster of about 4 to 5 pc (Pels, Oort & Pels-Kluyver 1975; G88, P98). For

the purpose of our membership selection, we assume a value of 0:4 km s�1. We estimate the

error in the distance modulus as arising solely due to the error in the (B � V )J color and

assume an average slope of 6 for the isochrone to translate this to an error in (m �M).

We iterate this procedure until there are no strong outliers and the velocities of all the

remaining stars are consistent with a common cluster motion. The total �2 at the end of

the iteration is 112 for 40 stars (corresponding to 117 degrees of freedom) and we reject

as outlier any star whose individual contribution to �2 is greater than 10. All the 40

members selected from the 75 candidates lie in a tight cluster around the mean cluster

motion in velocity space. Our membership selection procedure is robust to any changes in

the absolute calibration of the isochrones since the relative distances between the cluster

candidates are una�ected by this. However, it is sensitive to the shape of the isochrones,

although in practice, we �nd that the cluster membership is the same for the two �ducial

isochrones, despite the fact that they span a much larger range than is allowed by our �ts

for �(m�M) and � (see x3.2).
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3.2. Space velocity of the cluster

We determine the common space velocity of the cluster from the velocities of all the

40 cluster members selected by the procedure described in x3.1. We evaluate the �2 [as

de�ned in eq. (14)] in a dense grid of points in the space of the �ve parameters namely,

�(m�M), � and the three components of the bulk velocity (in equatorial coordinates) of

the cluster (�V). We �t this to a quadratic in the 5 parameters to �nd the best �t values

and the covariance matrix of the parameters at the minimum of the �2 surface. These best

�t values are � = 0:26� 0:05;�(m�M) = 0:12� 0:04 mag; Vx = �5:66� 0:36 km s�1; Vy =

�45:65 � 0:21 km s�1; and Vz = �5:61 � 0:12 km s�1. We adopt this as our initial guess

of the cluster velocity to predict the cluster space velocity using the statistical parallax

method. We estimate the components of the cluster space velocity in a coordinate system

that is oriented such that the x-axis is along the radial direction of the center of mass (Vr),

the y-axis is along the direction perpendicular to the proper motion of the cluster in the

plane of the sky (V?) and the z-axis is parallel to the proper motion of the cluster in the

plane of the sky (Vk). By de�nition, Vr is the radial velocity of the cluster, Vk is its velocity

in the plane of the sky, and V? is zero.

To compute the the photometric distance to each star, we �x the slope-correction at

its best-�t value of � = 0:26, and we adopt the best-�t zero point �(m �M) = 0:12 mag

for our �ducial distance scale. In the modern version of the statistical parallax method

as described by Popowski & Gould (1998), one uses the maximum likelihood procedure to

simultaneously solve for ten di�erent parameters viz., the distance scaling factor relative

to a �ducial distance scale (�), the three components of the bulk velocity of the cluster

(Vr; V? and Vk) and the six independent components of the second moments of its velocity

distribution { the three diagonal terms corresponding to the square of the velocity dispersion

in the three directions (�2r ; �
2
? and �2k) and the three unique o�-diagonal terms (�2r?; �

2
rk

and �2?k). We assume an isotropic velocity dispersion tensor of the Hyades with the result

that the three independent o�-diagonal terms are constrained to be zero. For an assumed

level of errors in the radial velocities, the proper motions, and the distance to individual

stars, the statistical parallax method derives a maximum likelihood estimate of the cluster

velocity dispersions in the three mutually perpendicular directions. However, the errors in

the distance to each star a�ect only the parallel dispersion �k while the estimates of the

velocity dispersions in the radial and the perpendicular directions (�r and �? respectively)

are independent of the distance errors. Therefore, we begin by constraining the velocity

dispersion in these two directions to have the same value. The velocity dispersion in the

parallel direction (�k) now includes contributions from both the intrinsic velocity dispersion

of the cluster and the dispersion arising from a possibly wrong estimate of the distance

errors. We �nd that we need to add an error of 0.049 mag in quadrature to our original
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errors (as listed in the photometric sources) in the photometric distance modulus so that the

velocity dispersion in the parallel direction (�k) becomes equal to the velocity dispersions in

the other two directions. This velocity dispersion is equal to 330� 30 m s�1 and we adopt

this value throughout our analysis.

The statistical parallax method �nds the maximum likelihood solution of the �ve

independent parameters namely, p = (�; Vr; V?; Vk; �
2
r) subject to the constraint of an

isotropic velocity dispersion tensor. This solution, using only the photometric distances

to individual Hyades cluster stars is given by p(phot) = [1:0172 � 0:0181; 39:33 �

0:06 km s�1; 0:00� 0:08 km s�1; 24:90� 0:45 km s�1; 0:1075� 0:0271 (km s�1)2]. An accurate

estimate of the velocity Vk is crucial in determining the parallaxes of Hyades members from

their individual proper motions alone (see x4). The error in Vk is dominated by the error in

the distance scale �, and this can be reduced if we include independent distance information

to individual Hyades stars from their Hipparcos parallaxes. However, the two distance

estimates (photometric distance moduli normalized by the statistical parallax solution and

the Hipparcos parallaxes) can be combined to yield more accurate distances to individual

Hyades members only if there are no systematic di�erences between them.

To check if the normalized photometric distance moduli and the Hipparcos parallaxes

are consistent with each other, we compute for each cluster member, the quantity

�i =
�phot;i
�Hip;i

�
1 + x2i

�
; (15)

where

xi =
��;Hip;i
�phot;i

: (16)

Since the errors of the Hipparcos parallaxes are uniformly distributed, the quadratic

correction term x2i is required to ensure that the two sides of equation (15) have the same

mean value (Lutz & Kelker 1973; Smith & Eichhorn 1996). The error in �i is given by

��;i =

 
��;Hip
�phot

!
i

�i: (17)

We �nd that the mean value of � for all the cluster members is given by �Hip = 0:9995�0:0083.

This is consistent with the value of �phot = 1:0172 � 0:0181 derived using the Hipparcos

proper motions alone, showing that:

(1): The distances derived using the Hipparcos proper motions are consistent with the

Hipparcos parallaxes. This is a semi-independent test of the Hipparcos parallaxes and

proves that the Hipparcos parallaxes and proper motions are self consistent.
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(2): The distances derived independently from the Hipparcos proper motions and the

Hipparcos parallaxes can be combined in a consistent manner to derive a more

accurate distance to the individual Hyades members.

Since the Hipparcos parallaxes are consistent with the normalized photometric distances

to individual stars, we can, in principle, combine the two independent distance estimates

by adding them together weighted by the inverses of their covariance matrices. In practice,

we include the Hipparcos parallax distances to individual stars in the statistical parallax

algorithm itself and derive a more accurate solution for the �ve independent parameters.

This solution, combining both the Hipparcos proper motions and the Hipparcos parallaxes

is given by p(phot + Hip) = [1:0026�0:0075; 39:33�0:06 km s�1; 0:00�0:08 km s�1; 24:55�

0:21 km s�1; 0:1102� 0:0272 (km s�1)2] and the correlation coe�cient matrix is

0
BBBBBBB@

1:0000 0:0229 �0:0357 0:8350 �0:0678

0:0229 1:0000 0:0087 0:0191 0:0057

�0:0357 0:0087 1:0000 �0:2115 0:0302

0:8350 0:0191 �0:2115 1:0000 �0:0721

�0:0678 0:0057 0:0302 �0:0721 1:0000

1
CCCCCCCA
: (18)

It is immediately obvious that including the Hipparcos parallaxes as independent

data on the distance to the Hyades members signi�cantly reduces the error in Vk.

The fact that the maximum likelihood value of � is greater than one means that the

photometric distance (our �ducial value) is an underestimate of the true distances by a

factor (� � 1) = 0:26%. The space velocity of the cluster in equatorial coordinates is

(Vx; Vy; Vz) = (�5:70� 0:19; 45:67� 0:11; 5:61� 0:08) km s�1 and the matrix of correlation

coe�cients is 0
BB@

1:0000 �0:7730 0:3851

�0:7730 1:0000 �0:4005

0:3851 �0:4005 1:0000

1
CCA : (19)

This is our best estimate of the bulk velocity of the cluster and we shall use it in the

remainder of the paper to predict the parallaxes from the Hipparcos proper motions of

individual stars.

We show the velocities of the Hyades cluster candidates in Figure 1. The �rst three

panels (a)-(c) show the velocities computed using the photometric distance modulus to each

star and the Hipparcos proper motions, while panel (d) shows the velocities computed using

the Hipparcos parallaxes and proper motions. The crosses show the velocity components

of the 40 cluster members while the open circles show those of the non-members. The

smaller scatter in velocities of the members in panel (c) compared to that in panel (d)
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shows that the photometric distance moduli lead to a much tighter core in velocity space

and hence a cleaner separation between the members and the non-members, compared to

using distances inferred from Hipparcos parallaxes. The solid circle in all the panels shows

the bulk velocity of the cluster. For this space velocity of the cluster, the total �2 is 143

for 40 stars (corresponding to 115 degrees of freedom) demonstrating that our estimates of

the errors for the various quantities and of the cluster velocity dispersion are reasonable.

The centroid is at a distance of j�rj = 46:89 � 0:35 pc and its equatorial coordinates are

� = 04h24m42s; � = 17�32:07 (2000). This is also the direction of the radial velocity of the

cluster center, i.e, the direction of Vr. The motion of the cluster in the plane of the sky is

towards the direction 105�28:07 East of North.

4. PARALLAX FROM PROPER MOTION

We adopt the cluster space velocity derived above to predict the parallaxes of the 40

member stars using their proper motions from the Hipparcos catalog. The parallax of any

cluster member that has the same space velocity as the cluster is given by

�pm;i =

D
(Vt)ijC

�1
i j�i

E
D
(Vt)ijC

�1
i j(Vt)i

E (20)

where (Vt)i = Vc� (r̂i �Vc)r̂i is the transverse velocity of the cluster in the plane of the sky

at the position of the star i, �i is its proper motion from the Hipparcos catalog and Ci, the

covariance matrix, is the sum of the proper motion error tensor of star i and the velocity

dispersion tensor divided by the square of the distance. We have employed Dirac notation,

hXjOjZi =
X
i;j

XiOijZj: (21)

The error in �pm;i is equal to
D
(Vt)ijC

�1
i j(Vt)i

E1=2
.

We show the di�erence between the photometric parallax (�phot) and the parallax

determined assuming a common space velocity for all the cluster members (�pm) in Figure

2. We have scaled all the photometric distances by the factor �phot+Hip = 1:0026 so that

the mean value of this di�erence should be equal to zero. The horizontal error bars show

the error in photometric parallax, while the vertical error bars show the uncertainty in �pm
alone. We �nd that the mean o�set between the two parallaxes is given by

h�phot � �pmi = �0:009� 0:108 mas; (22)

thus con�rming that there are no internal inconsistencies in our method of predicting the

parallaxes from the proper motions.
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Fig. 1.| Velocities of the Hyades cluster candidates. The velocities in panels (a)-(c) are

computed using the photometric distance to each star, while those in panel (d) are computed

using the distance inferred from the Hipparcos parallax. (a) Vr and V? (b) Vr and Vk (c) V?
and Vk and (d) V? and Vk. The component Vr is the component of the velocity in the radial

direction of the centroid, while V? and Vk represent the velocity components perpendicular

and parallel to the direction of the proper motion of the cluster in the plane of the sky.

The crosses are the velocity components of the 40 cluster members while the open circles

are those of the non-members. The solid circle in each panel shows the mean motion of the

cluster.
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Fig. 2.| Di�erence between the photometric parallax (�phot) and the parallax predicted

assuming a common space velocity for the cluster members (�pm). All the photometric

distances have been scaled by the quantity �phot+Hip = 1:0026 so that the mean value of this

di�erence should be zero. The horizontal error bars show the error in �phot, while the vertical

error bars show the uncertainty in �pm alone, i.e, the error in (�phot��pm) is the quadrature

sum of the two error bars.
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5. PARALLAXES OF BINARY SYSTEMS

We predict the parallaxes of the 3 binary systems 51 Tauri (HIP 20087), 70 Tauri

(HIP 20661) and �2 Tauri (HIP 20894) using the cluster space velocity (Vc) determined

above and their individual Hipparcos proper motions. The full orbital solutions of these

3 spectroscopic binary systems have been derived by Torres, Stefanik & Latham (1997a,

1997b, 1997c, hereafter T97a, T97b and T97c). The Hipparcos proper motions refer to the

center of mass for HIP 20081, while they refer to the motion of the photocenter for the

other two systems. HIP 20894 whose semi-major axis is less than 0:001 is listed as a variable

single star in the Hipparcos catalog. We compute the proper motions of the center of mass

of HIP 20661 and HIP 20894 using the spectroscopic-astrometric orbital solutions for these

2 binary systems provided by T97b and T97c respectively. In Table 1, we list the proper

motions of the center of mass of all the 3 systems, their parallaxes from Hipparcos, their

parallaxes from their proper motions, and their orbital parallaxes. There are two important

features in the errors of the di�erent parallaxes in Table 1.

(1): The error in the parallaxes determined from the individual proper motions of the

binary systems and the common space velocity of the cluster [��(pm) in column 7 of

Table 1] is almost a factor of three smaller than the error in the Hipparcos parallaxes.

(2): The errors in the orbital parallaxes of these binary systems [��(orb) in column 9 of

Table 1] are about twice as large as the errors in the proper-motion parallaxes.

The mean di�erence (weighted by the inverse square errors) between the proper-motion

parallaxes and the orbital parallaxes for these three binary systems is,

h�pm � �orbi = 0:49� 0:43 mas: (23)

The error in this di�erence is dominated by the error in the orbital parallaxes. From Table

1, we �nd that the error in the individual proper-motion parallaxes are each of the order

Table 1: Astrometry of the 3 spectroscopic binary systems with orbital parallaxes.

HIP ID ��cos(�) �� �Hip ��(Hip) �pm ��(pm) �orb ��(orb)

(mas yr�1) (mas yr�1) (mas) (mas) (mas) (mas) (mas) (mas)

20087 96.42 -33.92 18.25 0.82 18.42 0.30 17.92 0.58

20661 104.97 -26.67 21.47 0.97 21.31 0.36 21.44 0.67

20894 108.80 -26.35 21.89 0.83 22.46 0.37 21.22 0.76
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of 0.3 to 0.35 mas. Hence, it appears possible in principle to detect any systematic errors

in the Hipparcos parallaxes at the level of �sys = (
P
1=�2orb)

�1=2
= 0:2 mas if the orbital

parallax errors could be reduced below this level.

However, there is another source of error in determining the proper-motion parallaxes.

This arises from the error in the component of the cluster space velocity itself in the

direction of its proper motion in the plane of the sky, i.e, in the component Vk. This error is

equal to h�Hyai (�Vk=Vk) = 0:19 mas where we have again assumed that the mean parallax

of the Hyades cluster is 21.5 mas. Adding this error in quadrature to the errors determined

above, we �nd that h�pm � �orbi = 0:49 � 0:47 mas. The irreducible error in this method

�sys is now 0.28 mas, still considerably smaller than the errors in the currently available

orbital parallaxes.

6. CONCLUSIONS

Our main conclusions are as follows:

(1): The distances to the Hyades members using the Hipparcos proper motions alone is

consistent with the Hipparcos parallaxes, thus providing a semi-independent check of

the self-consistency of Hipparcos astrometry.

(2): The bulk velocity of the Hyades cluster in equatorial coordinates is

(Vx; Vy; Vz) = (�5:70 � 0:19; 45:67 � 0:11; 5:61 � 0:08) km s�1 and the velocity

dispersion of the cluster is 330� 30 m s�1.

(3): The Hipparcos parallaxes of the three Hyades binary systems are consistent at the 1�

level with the parallaxes from their orbital solutions. Hence, the systematic error in

the Hipparcos parallaxes towards the Hyades cluster is less than 0:47 mas.

(4): The test proposed in this paper can, in principle, detect any systematic error greater

than 0:3 mas in the Hipparcos parallaxes towards the Hyades cluster. The dominant

factor that currently limits a check at this level is the \large" errors in the orbital

parallaxes of the binary systems.

It follows from the last two points that a more accurate estimate of the binary orbital

parallaxes would enable a better determination of the systematic errors (or the lack thereof)

in the Hipparcos astrometry towards the Hyades cluster.
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